A Benchmark Library of Mixed-integer Optimal Control Problems

نویسنده

  • SEBASTIAN SAGER
چکیده

Numerical algorithm developers need standardized test instances for empirical studies and proofs of concept. There are several libraries available for finitedimensional optimization, such as the netlib or the miplib. However, for mixed-integer optimal control problems (MIOCP) this is not yet the case. One explanation for this is the fact that no dominant standard format has been established yet. In many cases instances are used in a discretized form, but without proper descriptions on the modeling assumptions and discretizations that have been applied. In many publications crucial values, such as initial values, parameters, or a concise definition of all constraints are missing. In this contribution we intend to establish the basis for a benchmark library of mixed-integer optimal control problems that is meant to be continuously extended online on the open community web page http://mintoc.de. The guiding principles will be comprehensiveness, a detailed description of where a model comes from and what the underlying assumptions are, a clear distinction between problem and method description (such as a discretization in space or time), reproducibility of solutions and a standardized problem formulation. Also, the problems will be classified according to model and solution characteristics. We do not benchmark MIOCP solvers, but provide a library infrastructure and sample problems as a basis for future studies. A second objective is to formulate mixed-integer nonlinear programs (MINLPs) originating from these MIOCPs. The snag is of course that we need to apply one out of several possible method-specific discretizations in time and space in the first place to obtain a MINLP. Yet the resulting MINLPs originating from control problems with an indication of the currently best known solution are hopefully a valuable test set for developers of generic MINLP solvers. The problem specifications can also be downloaded from http://mintoc.de.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixed-integer non-linear optimal control in systems biology and biotechnology: numerical methods and a software toolbox

Here we consider the problem of optimal manipulation of biological or biotechnological systems, formulated as a class of mixed-integer optimal control problems. We describe the current state of the art regarding the numerical solution of these problems, and a software implementation developed in our group (DOTcvp toolbox, based on Matlab). DOTcvp combines the control vector parameterization app...

متن کامل

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

On Perspective Functions and Vanishing Constraints in Mixed-Integer Nonlinear Optimal Control

Logical implications appear in a number of important mixed-integer nonlinear optimal control problems (MIOCPs). Mathematical optimization offers a variety of different formulations that are equivalent for boolean variables, but result in different relaxations. In this article we give an overview over a variety of different modeling approaches, including outer versus inner convexification, gener...

متن کامل

The integer approximation error in mixed-integer optimal control

We extend recent work on nonlinear optimal control problems with integer restrictions on some of the control functions (mixed-integer optimal control problems, MIOCP). We improve a theorem [25] that states that the solution of a relaxed and convexified problem can be approximated with arbitrary precision by a solution fulfilling the integer requirements. Unlike in previous publications the new ...

متن کامل

Mixed-Integer Constrained Optimization Based on Memetic Algorithm

Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with local search methods. With global exploration and local explo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010